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Abstract
We use Monte Carlo methods and a scaling analysis to estimate the crossover
exponent for a model of the localization transition for a random copolymer
at the interface between two immiscible liquids. The model that we use is
a directed walk in two dimensions. We find evidence that the nature of the
phase transition is different in different regions of the phase diagram. This
agrees with previous results for a self-avoiding walk model. We also use exact
enumeration and series analysis methods to estimate the locations of the phase
boundaries and compare our results to a rigorous bound obtained by partial
annealing.

PACS numbers: 05.10.Ln, 05.50.+q, 82.35.Jk

1. Introduction

Random copolymers have a sequence of two or more co-monomers which is determined by
some random process. Once the sequence is determined it is then fixed so the randomness is
quenched.

Consider two immiscible liquids such as oil and water and a random copolymer with
two types of monomers, one of which is lyophilic and one of which is hydrophilic. At low
temperatures the polymer can localize at the interface between oil and water, crossing the
interface frequently to ensure that most hydrophilic monomers are in the water phase and most
lyophilic monomers are in the oil phase. At high temperatures the polymer will delocalize
into one of the two bulk phases (to maximize the entropy). This phase transition has received
considerable attention since the early work of Garel et al [1]. See for instance [2]. Various
models have been used for the underlying configurational properties of the polymer including
directed walks [3, 4], random walks [5] and self-avoiding walks [5–7]. In addition the details
of the Hamiltonian vary somewhat between the different treatments.

We adopt the Hamiltonian used by Martin et al [6] in their treatment of a self-avoiding
walk version of the problem. Consider a self-avoiding walk on the simple cubic lattice with
vertices labelled i = 0, 1, . . . , n and with the first vertex at the origin. Vertices i = 1, 2, . . . , n
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Figure 1. The localization/delocalization phase diagram for a bilateral Motzkin path model,
calculated using the Morita approximation. The phase boundaries separate the localized phase L
from two delocalized phases Dα and Dβ .

(This figure is in colour only in the electronic version)

are independently coloured A or B with equal probability and we write χi = A if the ith vertex
is A and χi = B if it is B. We write χ as a shorthand for {χ1, χ2, . . . , χn}. With a given
fixed colouring χ let cn(vA, vB |χ) be the number of n-edge self-avoiding walks, starting at the
origin with vA vertices coloured A with positive z-coordinate and with vB vertices coloured B
with negative z-coordinate. The partition function with a fixed colouring χ can be written as

Zn(α, β|χ) =
∑
vA,vB

cn(vA, vB |χ) eαvA+βvB (1.1)

and the finite n quenched average free energy is

κn(α, β) = 〈n−1 log Zn(α, β|χ)〉, (1.2)

where the angular brackets represent the expectation with respect to χ . The limiting quenched
average free energy κ(α, β) = limn→∞ κn(α, β) is known to exist [6] and a number of
qualitative features of the phase diagram are understood rigorously [6, 7]. The phase diagram
has the same qualitative form as that shown in figure 1 [7]. The order of the phase transition
was investigated by Monte Carlo methods [8] and, surprisingly, the order seems to be different
in the first and third quadrants. In quadrant 3 the crossover exponent φ ≈ 0.5 while in the first
quadrant φ ≈ 0.24 for this model.

In this paper we return to this question and investigate the order of the phase transition
for a different underlying configurational model, related to bilateral Motzkin paths. These
are directed walks in two dimensions with steps with vectors (1,±1) and (1, 0). If we
number the vertices i = 0, 1, 2, . . . , n and write (xi, yi) for the coordinates of the ith vertex
then the walks are restricted so that y0 = yn = 0. This model has several advantages. It
is sufficiently simple that we can calculate the phase boundaries in both quadrants in the
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Morita approximation [9], which is known [10] to give a bound on the locations of the phase
boundaries for the quenched model. If we relax the condition that yn = 0 we obtain another
model with the same thermodynamics (in the n → ∞ limit). For this less restrictive model
the Monte Carlo calculations are somewhat easier than for self-avoiding walks and we have
been able to obtain quite high quality data. (It is worth pointing out that it is not possible
to solve the quenched version of this problem even for bilateral Motzkin paths. The simpler
configurational model does not help since the essential difficulty is in taking the quenched
average.) We also exactly enumerate the walks for small n and carry out the quench over all
2n colourings to calculate the quenched average free energy exactly for small n. We then use
series analysis techniques to estimate the location of the phase transition. We also examine a
model where the monomer sequence is strictly alternating. This problem can be solved exactly
by combinatorial techniques.

2. Monte Carlo approach

The Monte Carlo scheme which we use is to sample on a realization of a Markov chain defined
on the set of all bilateral Motzkin paths without the restriction that the final vertex is in the line
y = 0. (We shall call these paths ballot paths.) We define an underlying symmetric Markov
chain with four types of elementary moves, as follows:

(i) Edge replacement: an edge of the walk is chosen at random and replaced by one of the
two other possible edges, chosen at random.

(ii) Pivot move: a vertex (x∗, y∗) is chosen at random and the walk is disconnected into two
subwalks at that vertex. The second subwalk is reflected about the line y = y∗ and the
two walks are reconnected. The new walk is guaranteed to be a member of the required
class of walks.

(iii) Local move: a vertex (other than the two end vertices) is chosen at random and the two
edges incident on this vertex are permuted.

(iv) End move: delete the edge at one (randomly chosen) end of the walk and add this edge at
the other end, then translate the walk so that the zeroth vertex is at the origin.

The edge replacement move guarantees ergodicity and the pivot move gives high mobility
in the configuration space. A Markov chain is then defined using the usual metropolis scheme
with this as the underlying symmetric Markov chain. The process is then implemented
using multiple Markov chains to avoid quasi-ergodicity problems [11]. We calculated some
thermodynamic and metric properties at two fixed values of α (α = ±3) for various values of
β to ensure that we collected data in both the localized and delocalized phases at those values
of α.

We analysed the data (and, in particular, estimated φ) by fitting the results to a scaling
form. Let 〈vB〉 be the number of B vertices with negative y-coordinate. For α < 0 it is easy
to show that limn→∞〈vB〉/n = 1/2 for values of β greater than the critical value βc(α) so for
finite n

uB = 〈vB〉 − n

2
= o(n). (2.1)

For β < βc(α)uB should be linear in n (to leading order) and should be negative. Hence uB

is a suitable order parameter in this regime. We expect that

uB ∼ nφf [(β − βc(α))nφ] (2.2)

for some function f , so that if we plot uB/nφ against (β − βc(α))nφ we should see data
collapse for suitably chosen values of φ and βc(α).
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3. The alternating case

To check the validity of this procedure we first applied it to the case where the colouring
is alternating ABAB · · · or BABA · · ·. For this case the problem can be solved exactly by
combinatorial methods. Let GAA(a, b, z) be the generating function for bilateral Motzkin
paths starting and ending with an A vertex and with the colouring being strictly alternating.
Define GAB,GBA and GBB in a similar way. The variables a and b are conjugate to vA, the
number of vertices coloured A with positive y-coordinate, and to vB , the number of vertices
coloured B with negative y-coordinate, respectively, and z is conjugate to n. That is, a = eα

and b = eβ . Let Mo(z) count Motzkin paths with an odd number of edges and let Me(z) count
Motzkin paths with an even number of edges, so that

Mo =
√

1 + 2z − 3z2 − √
1 − 2z − 3z2 − 2z

4z2
(3.1)

and

Me = 2 − √
1 − 2z − 3z2 − √

1 + 2z − 3z2

4z2
. (3.2)

A factorization argument gives the following simultaneous equations:

GAA = 1

1 − z2

[
1 + z2

(
M

(a)
BAGBA + M

(a)
BBGAA + bM

(b)
BAGBA + bM

(b)
BBGAA

)
+ z3(aM

(a)
AAGBA + aM

(a)
ABGAA + M

(b)
AAGBA + M

(b)
ABGAA

)]
(3.3)

and

GBA = 1

1 − z2

[
z
(
1 + z2

(
M

(a)
BAGBA + M

(a)
BBGAA + bM

(b)
BAGBA + bM

(b)
BBGAA

))
+ z2

(
aM

(a)
AAGBA + aM

(a)
ABGAA + M

(b)
AAGBA + M

(b)
ABGAA

)]
, (3.4)

where

M
(a)
AA = M

(a)
BB = Me(z

√
a) M

(b)
AA = M

(b)
BB = Me(z

√
b)

M
(a)
AB = Mo(z

√
a)/

√
a M

(b)
AB =

√
bMo(z

√
b)

M
(a)
BA = √

aMo(z
√

a) M
(b)
BA = Mo(z

√
b)/

√
b.

(3.5)

There is a similar pair of simultaneous equations relating GBB and GAB .
All four of the generating functions GAA,GBB,GAB and GBA have the same three

physically relevant singularities z1 = 1/(3
√

a), z2 = 1/(3
√

b) and a third singularity, z3

which is a complicated function of a and b. When z1 is dominant the system is delocalized
into the positive half-space and the free energy is log 3 + α/2. When z2 is dominant
the system is delocalized into the negative half-space and the free energy is log 3 + β/2,
while when z3 is dominant the system is localized and the free energy is greater than
max[log 3 + α/2, log 3 + β/2]. The phase boundaries between the localized and delocalized
phases are the solutions of the equations z1 = z3 and z2 = z3. We have calculated the value of
βc(α) for α = −3 as the appropriate solution of z2 = z3, and we find that βc(−3)= −0.556 . . . .

The crossover exponent for this transition is 1/2. In figure 2 we show the scaling behaviour
derived from our Monte Carlo data for this problem. The agreement with the exact values is
excellent.
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Figure 2. The behaviour of the scaled energy for the strictly alternating case when α = −3, with
φ = 1/2 and βc = −0.556.

4. The random case: third quadrant

We now turn to the random case, where we are interested in quenched averages. For this case
we have estimated βc by exactly enumerating the directed paths for n � 20, keeping track of
which vertices have positive y-coordinate and which have negative y-coordinate. We carried
out a complete quench (i.e., we computed the quenched average free energy exactly) for these
values of n and used series analysis techniques to estimate the limiting (n → ∞) quenched
average free energy for various values of (α, β) in the third quadrant.

The quenched free energy κn is calculated for a fixed (α, β) point for n � 20. We assume
that enκn = Anγ−1 enκ

(
1 + a

n
+ b

n2 + · · · ) where κ is the infinite n limit of the free energy, which
implies that

κn = log A

n
+ (γ − 1)

log n

n
+ κ +

log
(
1 + a

n
+ b

n2 + · · · )
n

. (4.1)

Successive values of κn and κn−1 are combined to give

Ln = nκn log(n − 1) − (n − 1)κn−1 log n

n log(n − 1) − (n − 1) log n
(4.2)

and the assumption in (4.1) then gives

Ln = κ + log A

[ 1
log n

− 1
log n−1

n
log n

− n−1
log(n−1)

]
(4.3)

plus higher order terms. Graphical analysis of Ln plotted against

1
log n

− 1
log n−1

n
log n

− n−1
log(n−1)

(the transformed n coordinate) allows for the estimation of κ and the easy comparison of the
value of κ with the predicted value for the delocalized phase (e.g. log 3 + β/2 for α < 0).
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Figure 3. The locations of the phase boundaries as estimated by exact enumeration and series
analysis. Note that the scales are different in the two quadrants. The dashed curves are the bounds
obtained from a partial annealing argument. In each case the straight line is the line β = α which
is also a bound on the phase boundary.

We used this approach to estimate βc(α) for a variety of values of α < 0, and specifically
for βc(−3). We found that −0.38 � βc(−3) � −0.42. The estimated phase boundary (in the
fifth octant) is shown in figure 3, together with the upper bound on the phase boundary which
results from the partial annealing treatment [10]. We do not give estimates of βc(α) for α

greater than about −1 because, although we can carry out the complete quench there, we are
unable to obtain reliable estimates from the series analysis.

We repeated the Monte Carlo procedure for the quenched average case at α = −3, and
estimated the values of φ and βc by examining the scaling of the Monte Carlo data. When
we plot the fluctuation quantity

〈
v2

B

〉 − 〈vB〉2 against β we see peaks which grow more rapidly
than linearly as n increases. This strongly suggests a second order transition with φ � 1/2.
The results for the scaling form with the best values that we could find for βc and φ are shown
in figure 4. In the same figure we show the corresponding data for the y-component of the end
point of the walk, yend. In the delocalized phase yend ∼ n1/2 and we expect the scaling form
to be

yend ∼ n1/2h[(β − βc)n
φ] (4.4)

for some suitable function h. We also show the data plotted in this way in figure 4. We
estimate that βc(−3) = −0.40 ± 0.01 and φ = 0.50 ± 0.01. This value of βc is consistent
with our series analysis estimate. Although we cannot calculate the value of βc exactly we can
get an upper bound on this value by a calculation using the Morita approximation [9, 10]. The
value we obtained is βc(−3) � −0.403 so the Morita bound is an excellent approximation to
the value that we estimate for the quenched problem.

5. The random case: first quadrant

We have used series analysis techniques to estimate βc(3) using the exact values for the
quenched average free energy for small n. The series analysis was similar to that described in
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Figure 4. The scaled energy and the scaled y-component of the end point for the random case
with α = −3. The scaling is for φ = 0.5 and βc = −0.4.

the previous section. We show our estimates for the location of the phase boundary in the first
octant in figure 3. Estimates of the upper bound on βc(α) are generally easier to determine
than lower bounds, but monotonicity of βc(α) in α means that the lower bound (established
with reasonable confidence), βc(1.82) � 0.96, may be extended for all α > 1.82. For α = 3
we estimate that 0.96 � βc(3) � 1.4.

We have calculated the fluctuations in vB for large values of n using the Monte Carlo
approach described earlier. When we plot

〈
v2

B

〉−〈vB〉2 against β at α = 3, we see no evidence
for peaks in the range 0 � β � 1.5, suggesting that the transition is higher than second order.
This is consistent with a value of φ < 1/2.

When we try to carry out a scaling analysis on our Monte Carlo data for the first quadrant
of the (α, β)-plane, the situation regarding the order parameter is slightly different because
limn→∞〈vB〉/n = 0 for β < βc(α). Consequently we can use uB/n ≡ 〈vB〉/n as an order
parameter and we expect (2.2) to be an appropriate scaling form for this new definition of uB .

We have tried to find values of φ and βc(3) which give the best agreement between (2.2)
and our Monte Carlo data. This gives a rather large possible range of values, perhaps because
of the large error bars at large values of β. For values in the range 0.35 � φ � 0.45 and
0.92 � βc(3) � 1.0 we obtain a χ2 value (per degree of freedom) which is less than 0.5, so all
these values give a reasonable fit to the data. In figure 5 we plot uB/nφ against (β −βc)n

φ for
the values of φ and βc(3) which give the best data collapse, i.e., φ = 0.42 and βc(3) = 0.98,
and we show the scaling of the metric quantity yend/n1/2 in the same figure. The scaling of
yend is not especially good at large β and it is not clear if this is due to corrections to scaling
which are important at these values of n, or to other factors. We estimate that φ = 0.42 ± 0.04
and βc(3) = 0.98 ± 0.03. The value of βc(3) estimated in this way agrees quite well with the
value obtained by exact enumeration and series analysis. The bound obtained from a Morita
calculation is βc(3) � 0.668 and it is easy to see that βc(3) � 3. While our estimate of βc(3) is
consistent with these bounds, the Morita calculation does not give a good numerical estimate
of the quenched critical point in this region.

6. Discussion

We have investigated a bilateral Motzkin path model of localization of a copolymer at an
interface between two immiscible liquids. For the case where the sequence of co-monomers
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Figure 5. The scaled energy and the scaled y-component of the end point for the random case
with α = 3. The scaling is for ν = 0.5, φ = 0.42 and βc = 0.98.

is strictly alternating (ABABAB · · ·) we have solved the model exactly using combinatorial
techniques. For the quenched random case (where the probability of each monomer is equal)
we have investigated the locations and shapes of the phase boundaries by exact enumeration
methods with a complete quench over all monomer sequences. Series analysis methods yielded
estimates of the phase boundaries, which can be compared with bounds on the locations of
the phase boundaries obtained by partial annealing [9, 10]. We found that the bound is a
close approximation to the actual phase boundary in the third quadrant but not in the first. We
suspect that this is connected with the fact that in the first quadrant the bound is insensitive
to the underlying configurational model, being identical to that for a self-avoiding walk
model [7].

In order to investigate the order of the phase transition we have used Monte Carlo
methods and fitted our data to a finite size scaling form. We checked this approach by
comparing the exact values for the strictly alternating case. For the random case we found
good agreement between the location of the phase boundary estimated by Monte Carlo and by
exact enumeration with series analysis. We also estimated the crossover exponent φ and this
seems to differ between the two quadrants. The phase transition seems to be of second order
in the third quadrant but higher than the second order in the first quadrant, which agrees with
earlier results for a self-avoiding walk model [8]. The difference in values of the crossover
exponent may be due to the special role of the interface in the third quadrant where vertices
are being pushed out of a phase. The interface is not unfavourable for either type of the
vertex, and in this sense the problem resembles adsorption at a penetrable surface, for which
the crossover exponent for bilateral Motzkin paths is 1/2. Randomness plays a more decisive
role in the first quadrant, which may lead to the different crossover exponent.

Acknowledgment

The authors would like to thank NSERC of Canada for financial support.

References

[1] Garel T, Huse D A, Leibler S and Orland H 1989 Europhys. Lett. 8 9–13
[2] Monthus C 2000 Europhys. J. B 13 111–30



The order of the localization transition for a random copolymer 5667

[3] Bolthausen E and den Hollander F 1997 Ann. Prob. 25 1334–66
[4] Bodineau T and Giacomin G 2004 J. Stat. Phys. 117 801–18
[5] Maritan A, Riva M P and Trovato A 1999 J. Phys. A: Math. Gen. 32 L275–80
[6] Martin R, Causo M S and Whittington S G 2000 J. Phys. A: Math. Gen. 33 7903–18
[7] Madras N and Whittington S G 2003 J. Phys. A: Math. Gen. 36 923–38
[8] Causo M S and Whittington S G 2003 J. Phys. A: Math. Gen. 36 L189–95
[9] Morita T 1964 J. Math. Phys. 5 1401–5

[10] Orlandini E, Rechnitzer A and Whittington S G 2002 J. Phys. A: Math. Gen. 35 7729–51
[11] Tesi M C, Janse van Rensburg E J, Orlandini E and Whittington S G 1996 J. Stat. Phys. 82 155–81

http://dx.doi.org/10.1214/aop/1024404516
http://dx.doi.org/10.1007/s10955-004-5705-7
http://dx.doi.org/10.1088/0305-4470/32/25/102
http://dx.doi.org/10.1088/0305-4470/33/44/305
http://dx.doi.org/10.1088/0305-4470/36/4/305
http://dx.doi.org/10.1088/0305-4470/36/13/103
http://dx.doi.org/10.1063/1.1704075
http://dx.doi.org/10.1088/0305-4470/35/36/303
http://dx.doi.org/10.1007/BF02189229

	1. Introduction
	2. Monte Carlo approach
	3. The alternating case
	4. The random case: third quadrant
	5. The random case: first quadrant
	6. Discussion
	Acknowledgment
	References

